68 research outputs found

    SAFE-NET: Secure and Fast Encryption using Network of Pseudo-Random Number Generators

    Get PDF
    We propose a general framework to design a general class of random number generators suit- able for both computer simulation and computer security applications. It can include newly pro- posed generators SAFE (Secure And Fast Encryption) and ChaCha, a variant of Salsa, one of the four finalists of the eSTREAM ciphers. Two requirements for ciphers to be considered se- cure is that they must be unpredictable with a nice distributional property. Proposed SAFE-NET is a network of n nodes with external pseudo-random number generators as inputs nodes, several inner layers of nodes with a sequence of random variates through ARX (Addition, Rotation, XOR) transformations to diffuse the components of the initial state vector. After several rounds of transformations (with complex inner connections) are done, the output layer with n nodes are outputted via additional transformations. By utilizing random number generators with desirable empirical properties, SAFE-NET injects randomness into the keystream generation process and constantly updates the cipher’s state with external pseudo-random numbers during each iteration. Through the integration of shuffle tables and advanced output functions, extra layers of security are provided, making it harder for attackers to exploit weaknesses in the cipher. Empirical results demonstrate that SAFE-NET requires fewer operations than ChaCha while still producing a sequence of uniformly distributed random numbers

    Gas-permeable ethylene bags for the small scale cultivation of highly pathogenic avian influenza H5N1 and other viruses in embryonated chicken eggs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Embryonated chicken eggs (ECE) are sometimes used for the primary isolation or passage of influenza viruses, other viruses, and certain bacteria. For small-scale experiments with pathogens that must be studied in biosafety level three (BSL3) facilities, inoculated ECE are sometimes manipulated and maintained in small egg incubators within a biosafety cabinet (BSC). To simplify the clean up and decontamination of an egg incubator in case of egg breakage, we explored whether ethylene breather bags could be used to encase ECE inoculated with pathogens. This concept was tested by determining embryo survival and examining virus yields in bagged ECE.</p> <p>Results</p> <p>Virus yields acceptable for many applications were attained when influenza-, alpha-, flavi-, canine distemper-, and mousepox viruses were propagated in ECE sealed within ethylene breather bags.</p> <p>Conclusions</p> <p>For many small-scale applications, ethylene breather bags can be used to encase ECE inoculated with various viruses.</p

    Modeling Joint Exposures and Health Outcomes for Cumulative Risk Assessment: The Case of Radon and Smoking

    Get PDF
    Community-based cumulative risk assessment requires characterization of exposures to multiple chemical and non-chemical stressors, with consideration of how the non-chemical stressors may influence risks from chemical stressors. Residential radon provides an interesting case example, given its large attributable risk, effect modification due to smoking, and significant variability in radon concentrations and smoking patterns. In spite of this fact, no study to date has estimated geographic and sociodemographic patterns of both radon and smoking in a manner that would allow for inclusion of radon in community-based cumulative risk assessment. In this study, we apply multi-level regression models to explain variability in radon based on housing characteristics and geological variables, and construct a regression model predicting housing characteristics using U.S. Census data. Multi-level regression models of smoking based on predictors common to the housing model allow us to link the exposures. We estimate county-average lifetime lung cancer risks from radon ranging from 0.15 to 1.8 in 100, with high-risk clusters in areas and for subpopulations with high predicted radon and smoking rates. Our findings demonstrate the viability of screening-level assessment to characterize patterns of lung cancer risk from radon, with an approach that can be generalized to multiple chemical and non-chemical stressors

    Electrochemistry provides a point-of-care approach for the marker indicative of Pseudomonas aeruginosa infection of cystic fibrosis patients

    Get PDF
    It has recently been demonstrated that 2-aminoacetophenone (2-AA) is a chemical indicator in exhaled air/ breath of Pseudomonas aeruginosa infection associated with progressive life threatening decline of lung function in cystic fibrosis sufferers [Scott-Thomas et al., BMC Pulm. Med., 2010, 10, 56]. Currently the detection of 2-AA involves laboratory based instrumentation such as mass spectrometry and a handheld point-of-care type breath device would be ideal in providing real-time results within seconds to accelerate patient care decision-making processes. To this end, we demonstrate proof-of-concept that the chemical marker 2-AA, indicative of Pseudomonas aeruginosa infection, can be measured using electrochemical based sensing strategies. A range of commercially available electrode substrates are explored demonstrating for the first time that 2-AA is electrochemically active within aqueous based solutions providing an (electro)analytical signal. Glassy carbon, boron-doped diamond and platinum electrodes have been explored towards the electrochemical oxidation of 2-AA. Electrode fouling is observed requiring pre-treatment in the form of mechanical polishing between voltammetric scans and measurements. To alleviate this, screen-printed graphite electrodes are shown to be a more viable option for implementation into breath sensing devices and overcome the fouling problem since due to their low cost and disposable nature, a new electrode can be used for each measurement. The analytical utility of the platinum, screen-printed and boron-doped diamond electrodes were found to correspond to 6.85, 7.66 and 4.86 mM respectively. The challenges associated with the electrochemical sensing of 2-AA in breath that need to be overcome are discussed. This generic approach where electrochemical based technology is used to provide measurements for chemical markers in exhaled air/breath for medical diagnostics termed electrochemical breathprints (ec-breathprints), has the potential to be developed into a hand-held point-of-care breath diagnostic tool for identifying Pseudomonas aeruginosa infection in exhaled air/breath

    Detection, prevalence, and transmission of avian hematozoa in waterfowl at the Arctic/sub-Arctic interface: co-infections, viral interactions, and sources of variation

    Get PDF
    Background The epidemiology of avian hematozoa at high latitudes is still not well understood, particularly in sub-Arctic and Arctic habitats, where information is limited regarding seasonality and range of transmission, co-infection dynamics with parasitic and viral agents, and possible fitness consequences of infection. Such information is important as climate warming may lead to northward expansion of hematozoa with unknown consequences to northern-breeding avian taxa, particularly populations that may be previously unexposed to blood parasites. Methods We used molecular methods to screen blood samples and cloacal/oropharyngeal swabs collected from 1347 ducks of five species during May-August 2010, in interior Alaska, for the presence of hematozoa, Influenza A Virus (IAV), and IAV antibodies. Using models to account for imperfect detection of parasites, we estimated seasonal variation in prevalence of three parasite genera (Haemoproteus, Plasmodium, Leucocytozoon) and investigated how co-infection with parasites and viruses were related to the probability of infection. Results We detected parasites from each hematozoan genus in adult and juvenile ducks of all species sampled. Seasonal patterns in detection and prevalence varied by parasite genus and species, age, and sex of duck hosts. The probabilities of infection for Haemoproteus and Leucocytozoon parasites were strongly positively correlated, but hematozoa infection was not correlated with IAV infection or serostatus. The probability of Haemoproteus infection was negatively related to body condition in juvenile ducks; relationships between Leucocytozoon infection and body condition varied among host species. Conclusions We present prevalence estimates for Haemoproteus, Leucocytozoon, and Plasmodium infections in waterfowl at the interface of the sub-Arctic and Arctic and provide evidence for local transmission of all three parasite genera. Variation in prevalence and molecular detection of hematozoa parasites in wild ducks is influenced by seasonal timing and a number of host traits. A positive correlation in co-infection of Leucocytozoon and Haemoproteus suggests that infection probability by parasites in one or both genera is enhanced by infection with the other, or that encounter rates of hosts and genus-specific vectors are correlated. Using size-adjusted mass as an index of host condition, we did not find evidence for strong deleterious consequences of hematozoa infection in wild ducks.Geological Survey (U.S.) (Wildlife Program of the Ecosystem Mission Area)U.S. Fish and Wildlife ServiceDelta Waterfowl FoundationInstitute for Wetland and Waterfowl ResearchIcahn School of Medicine at Mount Sinai (Center for Research on Influenza Pathogenesis)Center of Excellence for Influenza Research and Surveillance (contracts HHSN272201400008C and HHSN266200700010C

    Software for the frontiers of quantum chemistry:An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types
    corecore